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0. Introduction and Summary

The Lebesgue decomposition of measures induced by

stochastic processes is important in areas such as statistical

inference and information theory. Of particular interest i3 the

Lebesgue decomposition between the measures induced by a

stochastic process and its translate by a nonrandom function,

i.e., the problem of detecting a nonrandom signal in additive

random noise.

For Gaussian processes the Lebesgue decomposition has been

fully described and the following dichotomy prevails: two

Gaussian processes are either mutually absolutely continuous, and

then their discrimination is based on a threshold test on the log

of their Radon-Nikodym derivative (log likelihood ratio) which

has a known expression, or else they are singular, and then they

can be discriminated with probability one (see e.g. [9]). Some

partial results are also available for processes having finite

second moments [11].

The Central Limit Theorem and the stability property

provide the basic reasons for regarding stable processes as a

natural generalization of Gaussian processes. Most of the work

on stable processes focuses on contrasts and similarities between

* Gaussian and non-Gaussian stable processes. While the detection

of a nonrandom. signal in additive Gaussian noise has been

thoroughly studied, the problem of detecting a nonrandom signal

in additive stable noise has remained largely open.

This work investigates the equivalence and singularity of

measures induced by non-Gaussian stable processes and their

A-cC e



0. 2

N translates. For non-Gaussian measures, these questions seem to

have been first studied in (12] for infinitely divisible measures

in hiilbert space and subsequently in t24] and [223 for stable

measures.

Sufficient conditions for an element to be an admissible

translate of an infinitely divisible measure in a Hilbert space

were obtained in (12]. However, as observed in [24], these

conditions are difficult to verify and, as simplified for stable

measures, they were found to be false. 'rhe structure of the set

of all admissible translates of symmetric stable measures was

investigated in [24], where it was shown that certain stable

processes have no admissible translate. The admissible

translates of a symmetric stable measure with discrete spectral

measure were characterized in [22].

All. these works use primarily the representation of the

characteristic functional of stable measures in Hilbert or Banach

space. Here we work with stable processes and exploit their

spectral representation, which in some cases allows the

formulation of the problem in terms of processes with independent

increments or sequences of independent random variables.

The first section of this paper introduces the setting and

notation, and presents the basic definitions and results on

stable processes.

For p t- order and for symmetric stable processes a

function space is introduced in Section 2 which plays a role

partly analogous to the reproducing kernel Hilbert space of a

.
.
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Gaussian or second order process. In particular this space

provides an upper bound for the set of admissible translates, is

a stochastic processes version of a space introduced in [24, p.

2491, and extends the results of [24, Proposition 10] to general

symmetric stable processes and of [11, rheoreme 4.1] to general

th
p -order processes. A lower bound for the set of admissible

translates of a stable process is also provided by exploiting

their structures as mixtures of Gaussian processes, and a

dichotomy is shown for a class of stable processes which includes

all sub-Gaussian and sub-Gaussian-like processes.

In Section 3 stable processes with an invertible spectral

representation are considered. Their admissible translates are

characterized, and a dichotomy is established: each translate is

either admissible or singular. The result is applied to show

that most continuous time moving averages, and all harmonizable

processes with nonatomic spectral measure have no admissible

translate. Thus these processes do not provide realistic models

for additive noise, as every nonrandom signal can be perfectly

detected in their presence. For general harmonizable and for

invertible discrete time mixed autoregressive moving average

processes the set of admissible translates is characterized.
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1.1

I. Background and notation

The following setting is considered. X= (X(t,i) =X(t);tE' 1) is a

stochastic process on a probability space (2,F,P) with parameter

set 'T' and real or complex values, i.e. values in X =IR or C. .When

X(t) E L (Q,F,P) =L (P) for all t EV, where p >0, X is called a pthp p
th

order process. The linear space L(X) of a p order process X is

the L (P) completion of the set of finite linear combinations of itsp

random variables Z(X) sp{X(t);t 6!}. XI denotes the set of all

extended X (i.e., real or complex) valued functions on T, C =C(X )

the a-field generated by the cylinder sets of X and u the distri-

bution of the process X, i.e. the probability induced on C by X:

Sx(C) = P({W;X(W) EC}), C EC.

For a nonrandom real or complex function s on T, we are interest-

ed in the Lebesgue decomposition of the distribution is+X of the

process s +X with respect to IX and in particular in conditions

for 1 s+x and w to be singular (ws+x v.X), and for ps+x to be

absolutely continuous with respect to v x (p s+X<<ii. The function

s is then called a singular or admissible translate of X respect-

ively.

Here we focus on symmetric a-stable (SctS) processes. A real

random variable X is ScS, 0 <c <2, with scale parameter [x II < (0,c)

if E exp(iuX)} exp{JIXIIaul a}. A real random vector (XI ,..., Xn)

is ScaS (or its components are jointly ScaS) if all linear combina-

tions E n=lakX are SaS. Similarly a real stochastic process

X = (X(t);t ET) is ScS if all linear combinations Z =lakX(tk) are

SaS random variables. When 'A =2 we have zero mean Gaussian random

04%
.'. / * .



1.2

variables, vectors and processes respectively. When 0 <a <2, the

tails of the distributions are heavier and only moments of order

p- (O,i) are finite with {E(;xIP)} I / p = C H Xl, where the con-

stant C , is independent of X. Thus a ScS process X is p order

for all 0 <p <ai, and its linear space L(X) does not depend on p

1 AOand is the completion of Z(X) with respect to I II which in

fact metrizes convergence in probability ([19]).

An important class of ScS processes consists of SaS independ-

ently scattered random measures, which extend the concept of a

stochastic process with independent increments to more general

parameter spaces. Let 11 be an arbitrary set and I a -ring of

0'0" subsets of "R with the property that there exists an increasing se-

quence (I ;n EIN) in I with uI =1. A real stochastic process
n n n

Z = (Z(A);A EI) is called an independently scattered SaS random

measure if for every sequence (A n; n EfIN) of disjoint sets in 1,

the random variables Z(A n ), n =1,2,... are independent, and when-

ever An El then Z(XAn ) = 'n Z(A n ) a.s., and for every A EI, Z(A). n n

is a SaS random variable, i.e. E{exp(iuZ(A)} = exp{-m(A)Iu[lc} where

m(A) I Z (A) II Then m is a measure on I which extends uniquely

to a cT-finite measure on o(l), and is called the control measure

* of Z. Conversely, the existence of an independently scattered ScS

random measure with a given control measure is a consequence of

Kolmogorov's consistency theorem.

When R is an interval of the real line, there is an identifi-

cation between independent increments processes and independently

,,
scattered random measures. Namely if X = (X(t),t EI) is an in-

dependent increments process and (a,b] cI:an interval,

-- A. A

. .. . . . . . . .. ~~ ~. .. . - , , . . . . . . . .
If :- -- "- ------ ,..-;. .-. " - : --.- .-.-. ;.".,...-.:.',,,',.,:-.. . :".:,: ':.:,': .- ,.',,, ':.:--.-: :,N



1.3

Z((a,b]) X(b) - X(a) can be extended to an independently scattered

random measure on the 5-ring I of bounded Borel sets of R. Con-

versely given an independently scattered random measure Z on 1, and

a in r, X(t) = sign(t -a)Z((a At,a vt]), t ElI, is an independent in-

crements process. When the control measure m is Lebesgue measure,

then X has stationary independent increments,

E exp(iu[X(t) -X(t)])} exp{-t -t' I uK and is called SS motion

on I.

For any function f EL (Ea(I),m) L (m) the stochastic in-

tegral ffdZ can be defined in the usual way and is a SaS random

variable with II ffdZll I = il fI lL (m)" The stochastic integral map
a

f -/JfdZ from L (m) into L(Z) is an isometry and

(1.1) L(Z) = {ffdZ;f EL (m)}.

The stochastic integral allows for the construction of ScS

processes with generally dependent values by means of the spectral

representation

(1.2) X(t) = ff(t,u)Z(du),t E ,

where {f(t,');t ElH} cL (m). In fact every SaS process X has such

a spectral representation in law, in the sense that for some family

{f(t,'),t ET} in some L (m),

(1.3) (X(t);t ET) f (f(t,u)Z(du);t E T)

(see e.g., [16] and [13D. If L(X) is separable, e.g., X is continu-

ous in probability, then L (,m) can be chosen as L ([0,l],Leb).

R -A,!-'A



1.4

Specific examples of SaS processes will be considered in the fol-

lowing sections.

The covariation [X,Y] of two jointly SaS random variables K

- and Y with 1 <at 52 is defined by

...Y E(XY<P -1>
(1.4) -=•1 Y11 " E(JY~p)

- _,-" which holds for all 0 <p <a (where y<q> - -l q >0) (see e.g.

[6]). It follows that JJXJJ'3' = [XX] " If X and Y have repre-

sentations ffdZ and fgdZ respectively then [X,Y] = fdm.

*! In certain cases, such as when working with Fourier transforms,

it is more natural and convenient to work with complex valued

processes. A complex SaS random variable is defined as having

jointly ScaS real and imaginary parts. Except for the representa-

tion of the characteristic function, all concepts and results

considered in this section for real SaS random variables and pro-

-. -. cesses extend to the complex case (see e.g. [ 5 ] and [ 6]).

IIL
~. • ,
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2.1

2. An uooer bound for the set of admissible translates

th
A space of functions associated with a p order, 0 <p 2,

stochastic process will be introduced and seen as a partial exten-

sion of the reproducing kernel Hilbert space (RKHS) associated

with a second order process. We concentrate only on p order

processes with p <2 because for those with p 2 the second order

theory is applicable.

Recall that for a second order stochastic process

X = (X(t);t EI) with arbitrary index set 1, zero mean and covari-

ance function R, the RKHS H of X (or of R) consists of all func-

tions s of the form s(t) =E(X(t)Y), t &F, Y EL(X). If s. (t) =
E(X(t)Yi then <Sl,S2> =E(YIY2) defines an inner product and R is

a reproducing kernel, i.e. for all t ET, R(',t) EH and s(t) =

-' <s,R(',t)> H . Also s EH if and only if
H*

N
" a s(t n )
n=l n

HsliH= sup N
an[E l X(t n

n=1

where the supremum is taken over all N EIN, al..., a EX and
N

t-i th

We now introduce the function space of a p order process with

0 -p -2 and arbitrary index T, and present its properties.

thDefinition 2.1. The function space IF= IF(X) of a p order pro-

cess X = (X(t);t El) with 0 <p s2 is the set of all functions s on

T such that
N

" [ anS(tn)I
I < sup0,

[El Z anX(tn)Ip]l/p
n=n

-2 . .U . '., t



2.2

where the supremum is taken over all N ELN, a,...., a N E X and

t 1  ... , t .

When 1 <p 2, a representation is known for the bounded linear

functionals on the linear space of X, analogous to the Riesz repre-

sentation for bounded linear functionals on a Hilbert space. This

allows us to express the functions in IF in terms of moments of the

process X. This and further properties of the function space are

collected in the following

_____ ____ ____ a ~ th
ProD.osition 2.2. Let X =(X(t);t E') be a p order process with

1 <p <2. Then the following three statements are equivalent:

i) sE IF,

.i) s(t) =E(X(t)Y< >) for Y (X),

iii) s(t) =E(X(t)W) for W ELp (P) where 1/p +l/p* =1.

Voreover the following properties hold.

a) Isllw = IIYIIp-) if s(t) =E(X(t)Y<p -1 >), YE L (X).

p

b) For each s EIF, with s(t) =E(X(t)Y< P->), Y L(X), there exists a

unique W EL,(*P) (namely W=y<P-l>) satisfying iii and

II" ~F = 11Il *(P)*

c) (7,11 11F) is a Banach space isometrically isomorphic to

the quotient space Lp,(P)/Z(X) , where Z(X) denotes the annihil-

ator of Z(X).

Proof: i -->ii follows by observing that if II e sIF< -, then

-P (EsN=lanX(tn)) =ZN= ans(t n ) defines a bounded linear functional on

L(X) with norm Sje IF. From [7, Proposition 2.11, there exists a

unique Y E L(X) such that ss() E(Y <p - I > ) and

04
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2.3

s. 9) L ( P ) Thus s(t) = (X(t)) E(X(t)Y< -  )

ii -'iii If Y EL(X) then W=Y<'L (P) and

W =- Y . A s s t) E X t Y p -  l >

L (P) 'IYL (P) Also s(t) E(X(t)Y ) =E(X(t)W).
P* p

-. iii ='i. If s(t) =E(X(t)W) then it is clear from its defini-

tion that 11 sl IF is finite.

a. That 11sil. = lY lip-i follows as in the proof of'°. , " IFL (P)
p""-"[ i --> ii.

b. Let s E IF. By iii there exist Z .L, (P) such that

s(t) =E(X(t)Z). Let Z(X) ± be the closed linear space
{Z' ELp,(C );E(Z'Y) =O,YE (X)} and let Z0 be the best approxima-

* ition of Z in Z(X)' i.e.

SZ Z0 11 L,(P) inf{ II Z -Z' IL (P) ;Z' E(X) .

Such a Z EZ(X) exist and is unique [21, Corollary 3.5 and
0~

Theorem 1.11]. Set W = Z -Z Then E(ZY) = E(WY) for all
0*

Y EZ(X) if Z' is such that E(Z'Y) E(ZY) for all Y Ef(X). Then

Z - Z' EZ(X) and

In L ,(P) = II Z-ZOIL (P) - lZ-(Z-Z') L ,(p) 1 z'!I, (P).

p P

Thus if s(t) =E(X(t)W'), W' ELp (P), and II sjjI = 1 W' IIL (P)

we must have OIWHL S 1 (P)1 On the other hand

NE ( I anX(tn)W)!

Irli n=l <- 'LWHLp(p)-

"--' ..- !IxWt! L (P)
a nX(t p1 LP

.-. '.-"n=lp
n h [ (P)

n°••' p

.°. . .

.b-. ."
. s.- -



2.4

L = (P W'L (P) = IF* Putting V =Z-W' we

have V - (X) and

Z-Zop L0o(p)= i l ,(P) W1L (P) - Z VL(P)"

Thus the unicity of Z0 implies W =W'. Since Y<PI-Lp,(P) and

s = Y<P->L ( for s(t) =E(X(t)Y<
p - s>

i s F I IF )P we must have

c. That (IF, IF) is a normed linear space is clear.

To show that IF is isometrically isomorphic to Lp (P)/?(x), let

s. IF, i = 1, 2,

*'-", s. (t) = E(X(t)W ),

(S I + s 2 (t) E E(X (t) W),
1 2

where W1 ,W2 and W are the unique elements in Lp.(P) such that

. si IF I= [WiLp, (P). Since E(X(t)W) = (s l +s2 ) (t) =E(X(t) (W1 +W2 )) we have

W - (WI +W2 ) EZ(X)' i.e. [W] =[Wl +W2 ] = [WI +W2 ], where [.] denotes

an equivalence class in Lp,(P)/Z(X). Similarly if s(t) =E(X(t)W)

and (as)(t) = E(X(t)W) we have [W] =laW] =a[W]. Hence the map

s - [W] is linear and since I [W]IiL (P)/Z(X)' =IIWIL P = Isll.

it is an isometric isomorphism.

To finish the proof of c we need to show that IF is complete.

Let (Sk;k IN) be a sequence in IF such that Zk=llI skIIF< c and
let Wk L (P) be such that FWklL (p) I. Hence

-k=l- Wk  L(P) <  and W Z k=IWk  Lp,(P). Set s(t) = E(X(t)w).

Thus

011
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2.5

N K K N
.. a( Sk S)(tn)I k I -W1l p ( I a n (t) L (P)

n1l k=l k=l n=l p

and
K K

-sll IF .H k Wk -W1 IW L +) 0  as K + ,

i.e. Z n=l =s EIF proving that IF is complete.

Further properties of the function space IF of the process X,

for 1 <p -2, analogous to those of a RKHS are the following:

i) If ' is a metric space, functions in IF are as "smooth" as

the process X is in the weak sense, i.e., they are continuous

(differentiable) if and only if X is weakly continuous (differ-

entiable).

ii) Norm convergence in IF implies pointwise convergence, and

" . the convergence is uniform if IX(t)I L  is uniformly bounded
L (P)
p thIf the process X is ScS with 1 <a <2, then it is of p order

for each p E (l,a) and its function space IF does not depend on p

but only on a and can be defined by means of the norm 11-"1 'A and

described by means of covariation instead of moments. Furthermore

the functions in IF can be expressed in terms of the spectral

representation of the process.

"orollary 2.3. Let X = (X(t);t H) be a SaS prciess wi++h 1 a 2

and spectral representation

. .

+:'-X(t) f f(t, u) Z(du) , t E-U,

"+ 'iwhere Z has controL measure m. Then the foZlowing three statements

"""" are eauiva~ent:

% ... A -
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2.6

S IF,

ii) s(t) = [x(t),Y] for Y E L(X),"2"2 ~ t = f~t~uz~u~mdu) /r z L ,mwhre l/i* +/
J

FF

o! r eoer vhe fo Xowing properties ho7.d.

N
S1 an s (t n

a) 1S1F C sup n= I1 Y11 -iSN p,a
:II anX(t)II

":-'.n=1

b) For each s E IF there exists a unique Z E La* (m) satisfy ing

.' , i.s IF z La* (m )

c) The mar s- [z] from IF into LL(m)/F(f) where is

an equivalence class in L *(m)/t(f) ,(f) =sp{f(t,);t }, is

S"an isometric isomorphism.

Proof: i <=>ii It follows from (1.3) that for all p E (1,1)

where Z =CP/ (P-1) II YtI(a-p)/(P-l)y and C_~ c 1 IYI 0 01i -p

*.so that s EF if and only if s(t) =[X(t),YI which does not depend
p- ap a

on p.

ii ->iii. If YEL(X) then Y =JgdZ for some g E L(f)= s{f(t,.);tt;

and
; "[ = = / f~~ t , .) g ( a -i > d m = f ~ , ) d

s(t)= [X(t),Y]a [ff(t,)dZ,fgdZ] a =ff(t, )g ff(t,.)zckn

@4



2.7

% ,<c i- I> ( mcnd±z-l, m I Y I
where z =g (i) and zH =1 II.

The proofsof iii > I, the uniqueness of z and of the iso-

metric isomorphism are identical to those of Proposition 2.1.

Further, the well known dichotomy on the admissible translates

of a Gaussian process-namely that the admissible translates of a

Gaussian process are precisely the functions in its RKHS, and its

translates by functions outside its RKHS are singular-has a

partial analog for p order processes 0 <p <-2, where the RKHS is

replaced by the function space IF. Our result extends that of
th

Thior!me 4.1 in [III to p order processes 0 <p <2, and when

applied to SaS processes with 0 <ot <2, it generalizes Proposition 10

- in [24] (to any SaS process).

"-" th
Proposition 2.4. Let X = (X(t);t ET) be a p order process with

0 p2. s /IF then U s+ x  .  Consequently all admissible

translates of X belong to IF.

Proof: The proof is adapted from [18]. If s j IF, then

N
San S(t n ) 1

'.._sup Nl=

::II [ anX (tn)I]L (P)n=l

Hence for each n EIN, we can choose Nn , an,k' tn,' k=l,..., Nn

such that

N n
"- [ . a S(t n

k=l nkSnk) 1/p

N

II ankX(tnk) 11 (P)r.-.;k=1l

0N
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Nn
Let s E =a S(tn), without loss of generality we can con-

n kln,k n,k

sider s >0 for all n. Consider the random variables defined on
n

( , by

Nn

Y (x)= I a x(t ,XE
€ n k=l n'k k

* By the Markov inequality we have

1 (Y >n /2) <- X ( IYn I -s n/ 2 )  -2 p llY lp ( P )/sp <2 p /n 0 as n-

and

s+x(Y Sn/2) a s (Y +s -S /2)

s n n X n n n

= x(Yn - s n/ 2 )  - Ulx(IYn I <s n /2)

W(lY I s /2) l-2piIYnilp s
Sn n''L (P)n

P
>- 1-2P/n 1 as n - c.

Therefore w X ± s+x .  E

From now on we restrict our attention to SeS processes. In

contrast with the Gaussian case, a =2, where the set of admissible

translates is always the entire space IF, i.e. the RKHS, the

set of admissible translates of a SaS process with a <2 may be as

-V large as the entire function space IF on as small as {0}, as is

seen by the following examples.

Stable Motion: If X = (X(t);t 6 [0,11) is an SaS motion, i.e., X has

p-' stationary independent SaS increments, it is known [ 3 ,12 ,24 ] that
Xm0X has no nontrivial admissible translates for 0 <ci < 2. On the other
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.. hand for 1 <a <2, its function space is the space of absolutely con-

tinuous functions with s(O) =0 and derivative in L ,(Leb), i.e.

tIF= {s;s (t) = s' (u)du, tE [0,1 i] s',ELC, (Leb)

0

with I! s; ! =jl S' II L ,(Leb).

Sub-Gaussian processes: Let X = (X(t);t EI) be an a-sub-Gaussian

process, i.e. its finite dimensional characteristic functions have

the form

N NEexp(i a X(t )) exp{-(. a anR(tn ) }
Expi-n n 2 a n~ t )a

n=l n,m=l n m)

* where R is a covariance function, or equivalently

L 1/(X(t) ;t E 7) = (A 2 G(t) ;t ET1

where A is a normalized positive c/2-stable random variable independ-

ent of the Gaussian process G = (G(t);t E7 which has zero mean and

covariance function R. It follows from. [14] that the set of admis-

sible translates of X coincides with the RKHS of G, once we observe

that there the proof depends only on the representation of spheric-

ally invariant processes as scale mixtures of Gaussian processes
-. ' -.

and not on the existence of second moments. Moreover for any

Y EL(X), [X(t),Y] a = 2a/2 {E(W 2 )}1-a/ 2E(G(t)W), where W EL(G) is ob-

tained from G by the same linear operation Y is obtained from X

(see [7]). Therefore the function space IF of X coincides with the

* .RKHS of G (and is therefore a Hilbert space).

% % . . . .
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Stable processes as mixtures of Gaussian arocesses; It has been

shown [17] that every SaS process X is conditionally Gaussian

with zero mean, i.e. there exists a sub-a-fieid G of F such that

.iven G, the law of X is Gaussian with mean zero and covariance

function R. Denoting by GR such a Gaussian process and by
R

its law, we have that for every SaS process X there exists a

probability A on the space R of all covariance functions R such

that

S (E) G (E)X (dR)
R R

for all E z C. The SccS process X is thus a Gaussian process with

* random covariance function R, and it is easily checked that all

Nquadratic forms n,m=l a nR(tn,tm)a are positive a/2-stable random

variables. Likewise we have for all E EC,

Ws+X (E) ~s+GRCE)XA(dR).
*R R"

It follows that if s is an admissible translate of almost

all G R's, then it is an admissible translate of X too. This

gives a lower bound for the set of admissible translates of X,

-- namely

u n RKHS(R).
c ;,R RER\A

-(A)=O.

Thus a SaS process will have admissible translates if it is a

mixture of Gaussian processes whose RKHS's have a common part,
'"/ i.e. ifn

Re R\KHS (R) {0} for some X() =0.

....... .......'...,............... ..
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The converse does not seem to be necessarily true, i.e. an

admissible translate of X may not be an admissible translate of

almost all the Gaussian processes whose mixture is X.

It also follows that a singular translate of X is a singular

translate of almost all the Gaussian processes whose mixture is X,

and furthermore the same event separates them. This gives an up-

- . per bound for the set of singular translates of X, namely

. RKHS(R) c

>R RER\.\
,.',. k .-) =0

.'- Conversely, if s is a singular translate of a.e. GR (X), it may
-. R
* not be a singular translate of X; but if furthermore the separating

set of ,S and GR does not depend on R a.e. (M), then s is a
sR R

singular translate of X.

When a SaS process is a mixture of Gaussian processes having

the same RKHS then we show that a dichotomy prevails, with every

translate being either admissible or singular.

Prorosition 2.5. Let the SetS process X = (X(t);t E!') be the -mixt're

of Gaussian processes GR = (GR(t);t ET) such that RKHS(R) =H a.e.

(X). Then s is an admissible translate of X if and only i S EH,

and s is a singular translate of X if and onLy if s jH.

Proof: If s EH, then s is an admissible translate of a.e.

GR (X), and hence of X.

Now assume s /H. Let RKHS(R) =H for all R E R\A, X(A) =0,

and fix R E R\A. Then for each n E IN, there exist N0 n

San a tn  .. t such that": n,l .... ' nN ' n,11'" ' n,Nn'n n

. - . . .

I.- -' . .

. . . . . . . . .
.. . . . . . . . . . . .
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i a kS(tnk) I2

n
2,- . k-- Ia n ksR ( t n k)

k=i n,kR n,

ki 0l~

_ Since for every R ER\A, RKHS(R) =H, there exists 0 <c <- such
A. R

that

-. N N

EJl an,kGR(tnk)1 2 <_ cREIk1l a n , k GR (t n , k )1 2

k=J.cR k~lfk 0

As in Proposition 2.4, let s = lNna s(tn), (and WLOG assume
n k n,ks n,k

s>0) and Y (x) =Xn x(t n  XE X so thatn n k=l n,k n,k

* N
2 n 2 2

-'GS(Yn ->s/2) < 2 Elk a G (tn)I /s
Gk n nk R n n

N

5 4c El a= a kG I0 (t )1 2/s 2

< 4c R/n 0 as n -

and

US+G R(Y n -s n/2) G - GR(IY nI >Sn/2)

1 4c /n - I as n -.

Hence by the dominated convergence theorem

. x( Yn sn/2) = fG (Yn Sn/ 2 )X(dR) - 0 as n- ',
R R

and

s+x(Y S /2) =fS + Y ns /2 )X(dR) I as n------ n-- n-

R R
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This implies X ±us+X* Hence every s /H is a singular translate

of X, and the proof of the dichotomy is complete.

The assumptions of Proposition 2.5 are satisfied when X

is sub-Gaussian, i.e. X is the mixture of the mutually singular

Gaussian process a/ 2 G, a >0, which have identical RKHS; or in

the more general case where X is the mixture of Gaussian processes

Nwith random covariance function of the form Z A R (t s), wheren I n n

the R 's are fixed (nonrandom) covariances such that R -c R isn n nm m

nonnegative definite for all n,m 1,...,N, and some 0 <cnm <,

and the positive random variables Al,... ,AN , are jointly c/2-stable.

The usefulness of these general remarks is limited by the

fact that the only ScS mixtures of Gaussian processes, which

are currently known explicitly, are the sub-Gaussian processes,
.. ~~N A1/2 whr(A ., N ) i
and the more general finite sums n A G 'where (A'...N) is

n=l n n'
positive a/2-stable and independent of the mutually independent

Gaussian processes G1 ,... ,GN-

Further examples where the set of admissible translates is

trivial or a proper subset of the function space IF are presented in

the next section. It should finally be recalled that the set of

admissible translates of a SaS process is always a linear space,

even if it-is not the entire function space IF [24, Corollary 5.11.

However, as will be seen in the next section, the restriction of

;iIF to the set of admissible translates may not be the most

natural way to define a topology on it. Also, from the linear

structure we have that << > <<s+X (see e.g. [221) soeveryS~ s, X s+X U r qiaet

that for every admissible translate s, o and are equivalent.

.

.4
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3. Processes with invertible spectral representation

In this section we present some general results on the admis-

.< sible translates of certain SaS processes with invertible spectral

representation.

Let X = (X(t);t ET) be an SaS stochastic processes with spectral

representation as in (1.2). It follows from the continuity of the

stochastic integral map f -ffdZ and (1.1) that the representing

functions {f(t,');t <_'} are linearly dense in L (m), i.e. that

L(f) = L (m), where L(f) is the completion of Z(f) =sp{f(t,");t _-'

in L (m), if and only if L(X) = L(Z). Processes satisfying this

condition will be said to have an .nvertiZbe s8ectra, re resen , -3;,

. or more simply to be invertible.

Every Gaussian process is invertible [ 4, construction in

Theorem 2]. This is not generally true for non-Gaussian ScS pro-

cesses as can be seen from the fact that the linear space of a sub-

"- - Gaussian orocess does not contain (nontrivial) independent random

variables [8 , Lemma 2.1]. Necessary and sufficient conditions

for a general ScS process to have an invertible spectral represent-

ation are given in [5 , Theorems 5.1 and 5.5]. A stronger form of

invertibility for a nonanticipating SaS moving average is considered

in [ 8, Lemma 3.1]. SaS processes with invertible spectral repre-

sentation in -L2 ([0,1] .Leb), i.e. L2 -sp{f(t,) ;t E [0,1] L2 ([0,1],Leb),
S2in

am c [241; clearly such a process has also invertibleA.
spectral representation in L ([0,1],Leb). Examples of invertible

SaS processes will be presented in the sequel.

For invertible processes the problem of finding their admissi-

ble translates can be reduced to finding the admissible translates

. .i
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of the independently scattered measure Z, which we now consider

first.

The next proposition is essentially based on [12, Theorem

7.3]. It extends to independently scattered SLS measures with non-

atomic control measure the result in [3, 24] on admissible translates of in-

dependent increments processes in (O,T] which are stochastically

continuous and have no Gaussian component. It establishes a di-

chotomy for the translates of a general independently scattered

SaS random measure and it characterizes its admissible translates

as those of its atomic component.

The following notation will be used in Proposition 3.1. Recall

0 that if a c-finite measure space (I,o(1),m) is such that u(T) con-

tains all single point sets, e.g. U1 is a Polish space, u() its

Borel sets, and I the 5-ring of Borel sets with finite m-measure,

then m =m +m d where m is purely atomic and md is diffuse (non-

atomic) [15], and the set of atoms is at most countable, say

A = "a ;n E{l,2,...,N}nIN}, N the number of atoms. Thus if

Z = (Z(B) ;B E 1) is an independently scattered SaS random measure

with control measure m, it can be expressed as Z =Z +Z where
a Zd, hr

Z and Z are independent SaS independently scattered randoma d
.4 measures defined for all BeI by Z a(B) =Z(AnB) and Zd(B) =Z(Ac, B),

and have control measures m and m respectively. The atomic com-
a d

ponent has a series expansion

N
Z (B) = 1 B(a )Z(an })

n=

which can be normalized by using the iid standard SaS random

variables Z Z({a })m - / ({an;) with E(exp(iuZ )} = exp(-!uj )n n n n

as follows:

:- : : i-.. -. .. i - . .. . - i .- I . " -.* . .. . . . ... . - . .i-i. . : -
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N 1
Z (B) = IB(an)m ('a })Z
a n n

nl

.,et Z = (Z(B);B E be in inder-nden,'t, so~attere2

SaS random measure with 0 <a <2 and controZ measure m =m a +rd, an

.et S = (S(B) ;B E T) be a set function. Then the fo'owing are

e U; :)a .en t:

ii S is an admissible translate of Z,

ii) S is an admissible translate of Z a,

i'i S is concentraved on A, i.e.

S(B) = S({a })l (a n),
n=l

-?" N
;;%-. S(fan})l2/m2/ a { n}1)  <--an a

n=1

Furthermore a transZate which is not admissible 's singular.

Proof: Let and be the stochastic processes defined on the

probability space (X ,C(x , ) with parameter set I by

(B,x) x(AnB) 3,x)= x(AC DB), x EX ,B El..-. a ,d I

Clearly

(3.1) a (B,Z(,w)) = Z(AnB,w) = Za (B,w), d(BZ(.,w)) = Z(ACnB,w) = Zd(Bw),a.s.,

so that and d are independently scattered ScS random measures

with control measures ma and md respectively. Let a and d also

* denote the corresponding linear maps x *ra(-,x) and x -d(,x)
ad

- from X into X

% -.

0-4%
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i =>ii. Suppose + <<  " Hence by Proposition 2.4, S.F

and by definition of IF the map F:L(Z) -k defined by

F (-n=a Z(Ak E =l k S(Ak) is a well defined linear function, so

that S is a signed measure on 1. Furthermore since

.S(B) C VSI ]FlZ(B) cc = C flSF [m(B)]l/i, S is absolutely

continuous with respect to m, i.e. S(B) fB zdm for some z locally

in Ll(m) :zlB EL (B) for all B ET.

-1 -It follows that ZS+Zdd < 1Zd or equivalently d(.,S) is an

admissible translate of the process d' since d is linear. Now

"d (BS) =SCAnB) = f zdm = fzdmd = S d(B).
A nB B

Since md is nonatomic it follows from a well known result

[15 , p. 238] that we can find measurable partitions

Bj,k(B);k =1,2,...,K j},j =1,2,..., of B for which

(3.2) max m d(B (B)) 0 as• k K. dj ,k ) 0a

For notational simplicity we will omit in the following the de-

pendence on B. It follows that the triangular system of row-

wise independent random variables {d(Bj,k);k =1,2,...,Kip j=1,2,...}

is infinitesimal, i.e. for every c >0,

max P(IJ d (B )jk > -) 0 as j - .
.--.. l~k<_K.,

K.
Hence, since for every j, (B) E rk3 (Bjk) we have from the• R' d -k=l d , '

central limit theorem for triangular arrays and the fact that r

." has no Gaussian component that

.. K.liminf liminf Var d (B )k (IC (B 0

k Codl~ (E,F-) d(Bj,k)I

04O
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'9
N7 (see e.g. [ I , Theorem 4.71. Thus by Chebyshev's inequality

K.
(3.3) .d(Bj - k ) (_ d) ( d(B j k ) i 0

k=l

. in probability (in L (P),p (0,i)) as j and 0._< p

On the other hand, if Sd(B) =JBzdmd and md(B j k) -0 as i -2

then S (B k ) -0 as j , and hence for j large
d j,k

K. K.
S; S ( B )  = 3 Sd ( B j k  = d ( B j  )i (!S d ( B j  )W .

d( k=l d jk k d j,k (-,E) d j,k

Similarly
K,

(3.4) k d (Bj'k) +rd ,k ) 1 1 ( - EE ) (ISd(Bj,k) +d (Bk) ) Sd(B)
0 k= I

in probability as j - and c -0.

Define for B ET the map $(B,.) :X -I by

K.

(3.5) (B,x) liminf liminf x (B. )l (x(B )0C- =*C x ,k l(_:,E) ( jx , k ) 1
• s j k=l

Suppose Sd is not identically zero. Then there exists B E T

such that S (B) 0. It follows from (3.3) and (3.4) that
d

(B,Id(.,x))= 0, $(B,Sd + (,x)) = Sd(B) a.s.

Thus u (B,")Luzw - (B,') and hence P which is a contra-

diction. Therefore Sd(B) = fBzdmd=0 for all B ET, i.e. z =0 a.e.

md , so that

N
(3.6) S(B) f dm = i Z(a ) B(a ) m ({a }).

B n=l

-S"

!::: . ? ! . .: . : : : < ; - .- . -.< . - --. , .::- - ; . .< . - !--.< .



Reasoning as before we have % - i e. (-S)
L'-. s+Z- a  -Z aa

is an admissible translate of " (or Z ) and by (3.6)a a "

(B,S) = S(AnB) = f din = fzdm = S(B)

AnB B

i.e. S = a(-,S) is an admissible translate of Z

ii =>i. Suppose S is an admissible translate of Z a. Since
a

Z =Za +Z d and Za and Zd areindependent we have uZ =UZ * Zd' Then

«S+Z <<u Z implies S+Z << 11Z" Indeed 0 =u z(B) =f 3 a(B -x)i d(dx)
- .a aX ad

implies Li (B -x) = 0 a.e. , hence 0=jS (B-x) =L (B-S-x) a.e.z z S+za d a a

U Zd and thus

$, (B) (B -S) = pI Z (B-S -x)w (dx) = 0.

ii =>iii. Because S E IF, S is absolutely continuous with

respect to md , S(B) = ZN= S{a 11 (an). Let T: _TN, where
d n 1 n B n

-1 ={,...,N} if N <- and N =IN otherwise, be defined by

[(x)] (n) = (n ,x) = I(an},x)/m
1 / a }).

Thus by (3.1), i(n,), n EN, are standard SaS iid random variables,

= a({a }S/l/a I/.({

r"-$} p(n,S) n ({an}) = S({an})/mn / ({a })-a'n-n"n , n

and

= ~ = n /a
-(n,S+x) = (n,S) +,(n,x) S({an 1)/r (a n1) + 4(n,x).

Now<< implies -S+Z -<<lZ i i.e.
a a a a

/.-',---- - -- - . - V*.. v.... .. .. ..... •
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(S(a n)U/rn(",a n' ;n -14) is an admissible translate of the random

element (.(n,-);n V) defined on the probability space

(V , (:), z). It follows from [20] if N =2 and trivially if

._N 2 2/a
N K r that n=l an a <

2 N1 2 2/ tiii =>ii. Conversely, if n S ({an ")/m (:a }) it fol-" n=  n

- -lows from [20] and the fact that stable densities have finite

-,-. Fisher information [10] that (S({a })/r (fa ,);n N) is an ad-
n n

missible translate of (9'-(n,');n EN) (the result is trivial if

.° N <n). Therefore

N
S({a })l ({a }) = S(B)
l n- n B n

7 is an admissible translate of the process
' N N

((a n )m ({a n ) (n,x) (a = r (Bx)

n=IB n1 B n1 n x an=l n= 1

and hence of Za.

To prove that a translate S which is not admissible is

singular it suffices to consider such a translate in IF, i.e.

from the proof i =>ii, S(B)= Bdm. If md(jzj >0', >0 then

j+ Z Thus assume S(B) = zdm = EN= S({a })l (a). Since it
S~ z as~~e~ B a n I n Bn

is not admissible, by (iii) N and 2 )/m2 /a({an) . Hence

1/atfram [20] (S{a })/m/({a });n E N) is a singular translate of
jn n

(n,') ;n E I), i.e. S z which implies ,i Z±Z

It follows that the admissible translates of an SaS independ-

ently scattered random measure are quite different in the Gaussian

and non-Gaussian cases. Indeed, for Z Gaussian (at =2) every

element in its function space (i.e. its RKHS)

4
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IF = S;S (B) =Izdm, z _L (M)
2 2B

S;S signed measure on (), S < m, d L (m)

(see e.g. [9 ]) is an admissible translate, while, e.g. for Z ncn-

laussian with 1 <i <2 its only admissible translates are

S(B) = Zdm, z -L *(m), with z =0 a.e. m, and
2. 2) ( ) < . Hence for 1 - 2 the set of admis-

n n
sibie translates is a proper subset of the function space IF

'hiz iis ei .e

ds-IF= S:$ signed -easure on +(:), S < -

In particular, while a diffuse Gaussian random measure has a rich

class of admissible translates, a diffuse non-Gaussian SAS

random measure has no admissible translate whatever. On the other

hand, if m (or Z) is atomic (m =0), the condition in Proposition
d

3.1 (iii) extends the Gaussian condition. Indeed if t =2 and

SCB) = dm = EN dS(a )m({an}) then -SCa ) 2,/m( aB dm n=l n n n n

is equivalent to E L(m)

The results of Proposition 3.1 can now be used to obtain a

dichotomy for the translates of an invertible SAS process, and to

characterize its admissible translates as those of its atomic

component. In order to state the result for a SLS process X with

spectral representation X(t) = f f(t,u)Z(du) and control measure

m,we introduce the independent SAS diffuse and atomic component

., !w
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processes of X:

X d(t) r . f(t,u)Z(du) = Sf(t,u)Z d(t),

X (t) = X(t) -Xd(t) = if(tu)Z(du) = ff(t,u)Z (du).
A a

The atomic component X has a series expansion-- a

KN
X (t) = f(t,a )Z({a 2)
a n n

which can be normalized by putting

Z Z((a ;)/ml/ (a }), f (t) f(ta )m" .({an )
n n n n n n

so that the Z 's are standard SaS iid random variables, for all t Y ,
~n'

N i n t) < , and
~n=l n

N
X a(t) = f (t)Z .

n=

Srorcs 'i n 3. 2. Let X (X(t) ;t ET) be a SaS process with

0 < i < 2, invertibbe spectral representation X(t) =ff(t,u)Z(du) and

2--ntroZ -easure m, and let s = (s(t);t ET) be a function on Y. Then

the fo:Zowing are equivalent:

:j! s is an admissible translate of X,

.... i s is an admissible translate of X
a['[N IS112/m2/a

*;. -:x1  s(t) = Snf(t,an) with Z "].,Sn ({an}) <c
n l n n

N N 2= S (t) with Zn Is <S.
n n n n

F':rtherore i translate 2hic- ;s not admissib'e is singular.

,_ At- .. . . . . -
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Proof: i. Since 1 L (m) L (f), for any B , there exist

n (B," -sp{f(t,);t -U., n =1,2,..., i.e.

N .,B)
(3-, n kl a (B)f(t (B),-) such thatn ' k-l n,k n,k'

n (B,-) -I B in L (Im) as n-,. Define

N (B)
n

(B,x)a (B)x(t (B)n"<" (Ek X) n, k n,k k

Thus

N (B)

3.7) n (BX(', ))= 7 a fk(B)X(t nk(B), )
k=l

" n(Bu)Z(duw) 1l (u)Z(du,) = (B,

in L (P) (hence in probability) as n- . Thus (¢ (B,");n IN)
p n

converges in x-measure. Let ( n (B,-);k IN) be a subsequence
nk

converging a.e. and define

Z(B) = Z(B,') = liminf, (B,-)l (.
k - nk {x; nk (B,x) converges}

2(B,") is a well defined C-measurable function on 7T for each B EI.

Hence Z = (Z(B);B EI) is a stochastic process on the probability
space (XC,, and from (3.7), Z(B,X(,w)) =Z(B,w) a.s., so that

is equal in law to Z, i.e. Z is an independently scattered SiS

random measure with control measure m.

i - ii. Let s be an admissible translate of X. From Proposi-

tion 2.4, s IF, i.e.

n n. -

a as(tk )  s akX(tk) L (P)' p (0, t'.k=l IF k= .1. p

,,.-.... ,.-.-... .... ....... . -. .. -.. "..... '. .- " _... •. ... ,. ,. . 1 . -.. ,. . .
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' "'" n vn
Hence as in Proposition 3.1, F( k=IakX(tk)) =Zk=lakS(tk) is a v l1

defined continuous linear functional on L(X) and s(t) =F(X(t)).

Thus~N (B)

(Bs) = a (B)s(t (B))
n - n,k n,kk=l

N (B). . n
F( t a (B)X(t (B)) ) F(Z(B) )-'-k~l n,k n,k"

k=1

Hence for all B 1,

. (3.9) Z(B,s) = F(Z(B))

and

*-(3.10) Z(B,s +x) = t(B,s) + 2(B,x).

c
Now if t (B,-) =Z(A nB,*), then Z (Z (B,);B erl) is an independ-d d d
ently scattered ScS random measure with control measure md and by

(3.10) it has Z (',s) as an admissible translate. But md is non-
c

atomic, thus by Proposition 3 .1,Zd(',s) =0, i.e. for all B U1,

0= Zd(B,s) = Z(AcnB,s) F(Z(Ac nB)) = F(Zd(B)),

and hence

s(t) = F(X(t)) = F(Xa (t) +Xd(t)) F(X a(t))

(since Xd is obtained by a linear operation on Zd which implies

-. -*.F(Xd(t)) =0). Therefore

.-'

A °

- .. . . . . . . . . . . . . . . . . . . . . . .

S. . . . . .. . . . . . . . . . . . . . . . . .

. . . . .. . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . .
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N
(3.11) s(t) = F(Xa (t)) = F( fn (t)Zn

a' n=l

N N
f (t)F(Z ) = f (t)s

n n n n

f f (tan s
-'n n~- i]n=1

where s =F(Z ) and s' =m/({an)s . On the other hand
n f n n n

X = (X (tx) = _ f(ta )2(a x);t 'H') has distributiona a n= n n

and by, the linearity of the map x -Xa (,x), the function

X a(,s) is an admissible translate of X and hence of X . But
a a

N
X a (ts) = f(t,a )Z({an},S)

a n=1I n

N
= f(t,an F(Z({a n ))
n=1n

'-N

= f(t,a )s' = 7 f (t)s = s(t),
n=l n n= n n

i.e. s is an admissible translate of X
a

ii -i. The proof is identical to that in Proposition 3.1.

ii ->iii. The proof is as in Proposition 3.1, with

.(n,x) = 2({a },X)/rn ({a n), so that by (3.9),
n n

'(n,s) = 2({a n}S)/mLa )
n

(3.12) = F(Z(a n :))/M (a}) = Sn/M a ' a

n n.n n
-s

n

t4t

*,*,;,, -",.* . -- '. **.' i '.,.-. **.-' ./.' I." ."' " - • ". . . .- . . ..". . ..".-... . ..". ....'.,--'... - . -.. .'c - - .' ,
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To prove that a translate which is not admissible is singular,

it suffices to consider s I:F(X), i.e., s(t) =F(X(t)), as by Pro-

position 2.4, s /IF implies singularity. Suppose F(Xd(t)) #0.

Then there exists B I such that F(Zd(B)) #0 and by (3.9),

Zd (B,s) z(ACB,s) = F(Z(Ac,,B)) = F(Zd(B)) # 0.

It follows from Proposition 3.1 that sZd Z and hences+X d ~Xd
N

." s+X X Therefore s(t) =F(X (t)) = f (t)s and as in the
s X a n 1ln n

proof of Proposition 3.1, n implies j, nl~inI  iplis s+X~x.

It follows from Proposition 3.2 that for an invertible SaS

process with nonatomic control measure every non-zero translate is

singular. In particular, this contains Corollary 10.1 of [24].

Applied to SaS processes with purely atomic control measure,

Proposition 3.2 is a stochastic process version of a result

proved in [22, Theorem 41 for ScaS measures with discrete spectral

*L measures on separable Banach spaces. The proposition completes

the result in [221 providing a dichotomy for the problem of admis-

sible translates.

Proposition 3.2 also provides examples where the set of

admissible translates is a non-trivial proper subset of the

function space IF of the process X. E.g. if X(t) = fn(t)Z,n=1 ." nn'

t Y, where Z1 ,Z21... are iid standard SaS random variables with

- L 2 and f -sp (fn(t);n );t .} =, then

F s:s(t) s f (t), Is * <
%l n n n

V, n n
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while the set of admissible translates is the infinite dimensional

subspace (since A* -2) of IF for which n!S 2 < hence we

have equality only if _- =2, and proper inclusion if i i <2. There

is a natural identification between the set of admissible trans-

lates, which is always a linear space, and the Hilbert space t

namely (s n;n zIN) -s(t) = n= s n f n (t). This map is invertible

with inverse map given by the transformation defined in the

*.' proof of Proposition 3.2 restricted to the set of admissible trans-

lates of X (cf. (3.12)). Thus for every a F (0,2), the linear space

of admissible translates can be given a Hilbert space structure by

defining the inner product

S s ,s > = < ln )'(s2,n)>Z = S sl nS2,n
2 n=l

where s. (t) =7 n1 s. f (t), i =1,2 Note that in this case when
1 iL-<2, , = a l /a*

I < S 2, SI (liS a and hence 11 II is not a natural

norm on the linear space of admissible translates, in contrast with

- " the case of Gaussian (a =2) and A-sub-Gaussian processes with

I < 2.

Important examples of SaS processes with invertible representa-

tion are presented in the following.

Harmonizable SaS processes (and sequences).

d dLet X =(X(t) ;t cT), Ir = or Z , dE 11, be an SocS harmonizable

process, i.e., X has the representation

X(t) = e<t'U> Z(du), t ET,

wor [--,-d for ' = and Z respectively and Z is an

S iS independently scattered carplex random measure with finite control

measure m, referred to as the spectral measure of the harmonizable

X,',-~~... ... .................................... - ,- . -.... . ..'-. ,'. '

' " . -' ' U. " -'-" .. . . . . . . . . " . . -. .' - . ,': . . . .: - -" , , : -,. .. . ,'. , : ' i '.
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process X. If the spectral measure m is nonatomic and 0 <, <2

then it follows from Proposition 3.2 that X has no nontrivial ad-

missible translate. When the stable distribution of Z is radiallv

symmetric, i.e., when X is stationary, this result exhibits a

different behavior compared with the stationary Gaussian processes

=2, whose admissible translates are precisely the functions
k;'• ei< t, u>-

s(t) =fe z(u)m(du), z L2 (m). In contrast, if m is purely

discrete, i.e. X has a Fourier series representation

N i<C ,t>
X(t) 7 b e Z , N <-o,.-. n n

n=l

with Z 's iid standard S3LS random variables and Z nlb , <-, then n=11 n

set of admissible translates is

N i<c ,t> N
fs:s(t) S e /b <

ln  Ln nn=1 n=1

and depends on ', 0 < a -2, only via the sequence (bn ;n E IN

In other words for fixed (b ;n EIN) Ef_, I -S s2, define
n

(t) = b nbexpii<C nt>}Z , where the Z 's are standard iidn ln - nn, n,.

SzS with 3 ix _2 for 1<3 2 and I < a-2 for 5=1. Then all these

processes X have the same set of admissible translates.

Continuous time SaS moving averages.

*[[ Another class of stationary SiS processes is the class of real

moving averages,

X(t) = ff(t-u)Z(du), t IR,

where Z has Lebesgue control measure and f E L (Leb). When f

vanishes on the negative line, they are called nonanticipating

th
moving averages and they occur as the stationary solutions of n

04
. .-
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order linear stochastic differential equations with constant co-

efficients driven by stable motion Z.

In the Gaussian case L =2 the admissible translates coincide

with the function space (RKHS)

IF2 = s:{s s(t) ff(t -u)z(u)du, z E L2 (Leb)}

= {s;s EL 2 (Leb), s/f t5L2 (Leb)},

where ' denotes Fourier transform.

Examples of moving averages with invertible spectral re-

presentation and therefore with no admissible translates, can be

obtained by taking

i) f continuous and equal to zero on (--,0) and at

infinity 2 , Theorem 2],

ii) t E (1,2) and f a Fourier transform of some function F

in L ,(Leb) with F 60 a.e. [23 , Theorem 75].

Case i) includes nonanticipating moving averages with con-

tinuous kernel f, while case ii) contains certain nonanticipating

moving averages with discontinuous kernels f, namely the stationary
- th

solutions of n order linear stochastic differential equations

with constant coefficients. There f(t) is a linear combination

of functions of the type t k-l e- at t
(0,-) (t) with k IN and a > 0,

which are Fourier transforms of the L *(Leb) functions

-(k)/[ 2r (a +iu)]. Hence f is the Fourier transform of an

L, (Leb) function which is # 0, a.e., so that

sprf(t -);t EIR} L (Leb), i.e. X is invertible. Thus solutions

th
of n order stochastic differential equations driven by SuS motion

.
. .. . . . . . . . . . . . . . . . .
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nave no admissible translate for I <-t <2. This is in sharp con-

.ttrast with the Gaussian case L =2. E.g., if n =1, f(t) = e l[0 (t)

and the stable Ornstein-Uhlenbeck (OU) process

t - (t-u)

X t) e Z(du)

has no admissible translates for I <-i <2 while for a =2 all

translates of the form

t (t-u)
s(t) fo e z(u)du, z EL 2 (Leb),2

are admissible for the OU process X.

Discrete time SaS processes (SaS sequences with invertible

spectral representation have similar sets of admissible translates

in the Gaussian and non-Gaussian stable case. Of course nonadmis-

sible translates are singular.

Independent sequences and partial sums of independent SaS random

variables.

The set of admissible translates of a sequence of independent SaS

random variables X = (Xn ;n IN) is given by

e'."'-' s = (s ;n EIN); (Sn [ xn~ ) < 0o}.

n

The admissible translates of a sequence (Yn n,=Xk EIN)

of partial sums of independent SaS random variables XK are

2 1 < 00o}.
i5=(s ;n E IN); ( n n-1) / [IX A S 0.- n=l

mixed auto-regressive moving averages of order (p,q) (ARMA(p,q)).

Let X =(X n;n e N) be defined by the difference equation

...o. . . . - •. - . • .. . . . .. ", ., .' ,' " 2
d '

' €',, _, , . . ". . ."...... ..... .-..-. ... .-. .... . . . . . ... ,. .".. . . . . . . ...... . . .. . ,. .
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X -a - - aX =Z +bz +bZ
n I n-I p n-o n I n n-q

where Z =(Zn ;n LN) is a sequence of iid standard S.tS random varia-n
0

bles. If the polynomials P(u) =i -a1 u - ... -ap u and
qp

Q(u) =1 +b2 u +... +b u satisfy the condition P(u)Q(u) $0 for all
2 q

u- EC with 'u[ -l, then the difference equation defining X has a

unique stationary solution of the moving average form

nx= T ZX k-__ gn-k k

and in addition
k7

Z =X - h.X
n n j- 3 n-j

The coefficients g n;n ELN} and {h n;n 6 I are uniquely determined

by the power series expansions

Q(u)/P(u) = 3 gu j  and P(u)/Q(u) = 1 - h.u j , ,u -1,

j=0 j=l

respectively. Thus L(X) = L(Z), i.e. X is invertible, and hence,

by Proposition 3.2, s = (s n;n EZ) is an admissible translate of

X if and only if it is of the form

n
S n k - kz

00 2
where Lk=-ooZk <

We should note the different behavior of moving averages in

continuous and in discrete time. A continuous time moving average

may have no admissible translates, whereas a discrete time ARPMA

sequence has a set of admissible translates identical to the Gaus-

sian case. The difference will be in the form of the Radon-Nikodm

derivatives.

.. . .....-----...-.-..'-. " .- ,. ,.)-. .. ...- i. .. <... . ... - .-- - .-. ,,- ,-,.- -- -
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